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NOTE ON THE SET OF BRAGG PEAKS WITH HIGH

INTENSITY

DANIEL LENZ AND NICOLAE STRUNGARU

Abstract. We consider diffraction of Delone sets in Euclidean space.

We show that the set of Bragg peaks with high intensity is always Meyer

(if it is relatively dense). We use this to provide a new characterization

for Meyer sets in terms of positive and positive definite measures. Our

results are based on a careful study of positive definite measures, which

may be of interest in its own right.

Introduction

Since the first diffraction of a crystal experiment was performed by Max

von Laue in 1912, physical diffraction has been the most powerful tool for

obtaining insights in the atomic structure of crystals.

The diffraction pattern of a fully periodic crystal consists of bright spots,

called Bragg peaks, which appear at very precise locations: on the dual

lattice to the lattice of periods of the crystal.

The diffraction of more general solids is usually a mixture of Bragg peaks

and diffuse background (continuous spectrum), with random structures show-

ing the trivial Bragg peak only.

For a long time it was believed that only periodic crystals can produce

pure point spectra, viz. a diffraction pattern consisting exclusively of Bragg

peaks. But in 1984, Shechtman et. all [24] reported the discovery of a

solid with pure point diffraction and 5-fold symmetry, which is impossible

in periodic crystals. Because of this discovery, the International Union of

Crystallography redefined in 1991 the term of crystal to mean ”any solid

having an essentially discrete diffraction diagram” [12].

For an overview of the precise mathematical setup of physical diffraction

we refer the reader to [3, Chapter 9] as well as to the articles [2, 11, 18, 19]

(for background on the physical theory see also [10]). The diffraction pat-

tern is described via the diffraction measure. This measure arises as the

Fourier transform of the autocorrelation measure of the point set (or, more

general, measure) which represents the model of the solid. By Lebesgue de-

composition, the diffraction measure can be decomposed into a discrete part,

corresponding to the Bragg spectrum, and a continuous part, corresponding

to the continuous diffraction spectrum.

It is usually understood that the diffraction is essentially discrete if the

set of Bragg peaks is relatively dense. In this context special subsets of

Euclidean space have been prime examples. These sets were introduced
1
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by Meyer in the 70s and later became known as Meyer sets. Indeed, the

investigations of Meyer sets has been central to the topic of diffraction, see

e.g. [20, 6, 4] and references therein. Meyer sets in Euclidean space do

have a relatively dense set of Bragg peaks as had been suspected for a long

time and was finally shown in [25]. Recent work of Kellendonk / Sadun [14]

shows even a converse of some sort. More precisely, it gives that a dynamical

system of Delone sets with finite local complexity is conjugate to a dynamical

system of Meyer sets if it has a relatively dense set of continuous eigenvalues.

In this sense, Meyer sets seem ’unavoidable’ when one deals with sets with

many Bragg peaks.

The main result of this note is Theorem 3.4 in Section 3. It provides

another, somewhat surprising, instance of this unavoidability of Meyer sets.

Namely, we show for ANY Delone set in Euclidean space that the set of

Bragg peaks with high intensity is a Meyer set (provided it is relatively

dense). Therefore, Meyer sets appear in a natural way also in the Bragg

diffraction of any point sets with large sets of Bragg peaks of high intensity.

If the underlying point set is Meyer itself the requirement of high intensity

can be dropped as has already been shown in [26, 27]. This can be under-

stood as saying that the class of Meyer sets is characterized by some form

of selfduality under Fourier transform. In this spirit, we use our main result

to give a new characterization for Meyer sets at the end of this note.

Our main result follows from a more general result dealing with positive

and positive definite measures in Section 2. In fact, that section contains

a study of positive and positive definite measures which may be of interest

in its own right. The necessary background and notation is discussed in

Section 1.
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1. Background and notation

In this section we recall some basic concepts underlying our considera-

tions. We are mainly interested in special subsets of Euclidean space (or,

more generally, of a locally compact abelian group). However, our state-

ments and proofs can be very conveniently phrased in the framework of

measures. For this reason we introduce here both some background on mea-

sures and on sets.
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For this entire section G denotes a locally compact abelian group (LCAG).

We will denote by CU(G) the space of uniformly continuous bounded func-

tion on G, which is a Banach space with respect to ‖ · ‖∞ norm. By Cc(G)

we denote the subspace of CU(G) of all compactly supported functions. We

define the convolution f ∗ g of f, g ∈ Cc(G) by

f ∗ g : G −→ C, x 7→
∫

G

f(x− y)g(y)dy,

where dy denotes integration with respect to the Haar measure on G. Then,

f ∗ g can easily be seen to belong to Cc(G) as well. Moreover, for any

complex-valued function f on G we define the function f̃ on G via f̃(x) =

f(−x).

The space Cc(G) is made into a locally convex space by the inductive

limit topology, as induced by the canonical embeddings

CK(G) →֒ Cc(G) , K ⊂ G compact.

Here, CK(G) is the space of complex valued continuous functions on G

with support in K, which is equipped with the usual supremum norm. In

line with the Riesz-Markov theorem, for us a measure µ on G will then be a

linear functional on Cc(G), which is continuous with respect to the inductive

topology on Cc(G), see [5, 22] for details.

The convolution of a measure µ with an f ∈ Cc(G) is defined as

µ ∗ f : G −→ C, µ ∗ f(x) = µ(f(x− ·)).

As is well known (see e.g. [22, Thm. 6.5.6] together with its proof), every

measure µ gives rise to a unique measure |µ| called the total variation of µ,

satisfying

|µ|(f) = sup {|µ(g)| : g ∈ Cc(G,R) with |g| ≤ f}

for every non-negative f ∈ Cc(G). The total variation is a positive measure

i.e. it maps non-negative functions to non-negative values and allows for

the usual integration theory. Moreover, by [22, Thm. 6.5.6], there exists a

measurable function u : G −→ C with |u(t)| = 1 for |µ|-almost every t ∈ G

such that

µ(f) =

∫

G

f ud|µ| for all f ∈ Cc(G).

We can use this to define for any measure µ on G and any bounded mea-

surable function h on G the measure hµ by

(hµ)(f) :=

∫

G

f hu d|µ|

for f ∈ Cc(G). We can then also define the discrete part of a measure µ by

µpp =
∑

p∈P

u(p)δp,
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where, for q ∈ G, we define the measure δq via δq(f) = f(q) and P is the

set of those q ∈ G such that |µ|(g) ≥ 1 whenever g ∈ Cc(G) is non-negative

with g(q) = 1.

The measure µ on G is called translation bounded if for each compact set

K we have

sup
x∈G

|µ| (x+K) < ∞.

As mentioned already, besides measures and functions certain subsets of

G with additional properties are the main object in our considerations. The

corresponding pieces of notation are introduced next.

A subset of G is called uniformly discrete if there exists an open set V

in G containing the neutral element of G such that (x + V ) ∩ (y + V ) = ∅
whenever x and y are two different elements of the subset. A subset of G is

called relatively dense if there exists a compact K such that any translate of

K intersects the subset. A subset of G which is both uniformly discrete and

relatively dense is called Delone. A subset of G is called weakly uniformly

discrete if for any compact K ⊂ G there is a C such that any translate of K

meets at most C points of Γ . One can identify a weakly uniformly discrete

set Λ in G with a measure by considering its Dirac comb

δΛ :=
∑

x∈Λ

δx.

In this way, all considerations below dealing with measures naturally descend

to weakly uniformly discrete sets and in particular to Delone sets.

2. A study of positive and positive definite measures

We will be interested in measures and functions with additional positiv-

ity properties. More specifically, we will be interested in positive definite

measures. We will present a study of certain features. As a consequence we

will derive three main properties at end of this section.

Definition 2.1. Let G be an LCAG.

• The measure µ on G is positive definite if for all f ∈ Cc(G) we have

µ(f ∗ f̃) ≥ 0

• The function f : G −→ C is positive definite if for all N ∈ N and

x1, . . . , xN ∈ G, the matrix (f(xk − xl))k,l=1,...,N is positive definite.

It is well known (see e.g. [2]) that a measure µ is positive definite if and

only if µ ∗ (f ∗ f̃) is positive definite for all f ∈ Cc(G). Also, we have the

following well known result ([2]).

Proposition 2.2 (Krein’s inequality for functions). Let G be an LCAG.

Let f be a positive definite function on G. Then f(0) ≥ |f(x)| for all x ∈ G

and

|f(x+ t)− f(x)|2 ≤ 2f(0)[f(0) −ℜ(f(t))]
for all x, t ∈ G (where ℜ denotes the real part).
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We start by showing that the restriction to the pure point part preserves

positivity and positive definiteness.

Lemma 2.3. Let G be an LCAG. Let µ be measure on G and µpp its discrete

part.

(a) If µ is positive then µpp is positive.

(b) If µ is positive definite then µpp is positive definite.

(c) If µ is positive and positive definite then µpp is positive and positive

definite.

Proof: (a) is obvious. (b) follows from [17, Thm. 10.2]. (c) is an immediate

consequence of (a) and (b). �

We are now heading towards a Krein inequality for measures. To establish

it we will need some preparation. We let Gd be the group G equipped with

the discrete topology. Consider now a discrete measure µ on G. Then, µ

can be identified with a measure on Gd.

Also, µ defines a function on G via f(x) := µ({x}). We call it the sup-

port function of µ. In the next Proposition 2.4 we show that the positive

definiteness of µ as measure on G respectively Gd and of f as function on

G respectively Gd are equivalent. This will allow us to translate properties

of positive definite functions to discrete measures.

Proposition 2.4. Let G be an LCAG. Let µ be a discrete measure on G

and let f : G → C be its support function

f(x) := µ({x}).
Then the following assertions are equivalent:

(i) µ is a positive definite measure on G.

(ii) µ is a positive definite measure on Gd.

(iii) f is a positive definite function on G.

(iv) f is a positive definite function on Gd.

Proof: The equivalence (i) ⇐⇒ (ii) is [17, Thm. 10.1]. The equivalence

(iii) ⇐⇒ (iv) follows immediately from the definition of positive definiteness

(as the underlying topology is not relevant for the definition). To complete

the proof we show that (ii) and (iv) are equivalent.

We first prove the (iv) =⇒ (ii): As f is a positive definite function on Gd

and the Haar measure θGd
is a positive definite measure on Gd, it follows from

[1, Cor. 4.3] that fθGd
is a positive definite measure on Gd. As µ = fθGd

,

this proves (ii).

We next prove (ii) =⇒ (iv): Since µ is a positive definite measure on Gd,

it follows that µ ∗ g ∗ g̃ is a positive definite function for all g ∈ Cc(Gd). Let

us observe that g ∈ Cc(Gd) if and only if g has a finite support. Therefore

g(x) =

{
1, if x = 0,

0, otherwise.
∈ Cc(Gd).
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Our claim now follows from the observation that with this choice of g we

have f = µ ∗ g ∗ g̃. �

As a consequence of Proposition 2.4 we obtain the following version of

Krein’s inequality for positive definite discrete measures.

Corollary 2.5. (Krein’s inequality for measures) Let µ be a positive

definite measure on G. Then all x, t ∈ G, we have

∣∣µ({x+ t}) − µ({x})
∣∣2 ≤ 2µ({0})

[
µ({0}) − ℜ

(
µ({t})

)]
.

Proof. By Lemma 2.3 the measure µpp is positive definite. By the previous

proposition its support function f is positive definite. Now, the corollary

follows directly from Proposition 2.2 applied to f . �

We are now going to derive three main consequences of the previous con-

siderations.

Our next result shows that if µ is a positive and positive definite measure

on G, the set of points of measure close to µ({0}) 6= 0 has some sparseness

property. This will be a main ingredient in our study of Meyer sets later on.

Lemma 2.6 (Sparseness Lemma). Let G be an LCAG. Let µ be a positive

and positive definite translation bounded measure and chose a > (
√
3 −

1)µ({0}) and let

I :=
{
x ∈ G |µ({x}) ≥ a

}
.

Then I − I is weakly uniformly discrete.

Remark. Let us note that µ({0}) is greater than 0 whenever µ is not the

zero measure (as can easily be inferred from Krein’s inequality).

Proof: We prove first that there exists some b > 0 depending only on a

and µ({0})) such that for all x, y ∈ I we have µ({x − y}) > b. By Krein’s

Inequality we have

∣∣µ({x}) − µ({x− y})
∣∣2 ≤ 2µ({0})

[
µ({0}) − ℜ

(
µ({y})

)]
.

Therefore, as µ is positive (and hence real), we have

µ({x− y}) ≥ µ({x}) −
√

2µ({0})
[
µ({0}) − ℜ

(
µ({y})

)]

≥ a −
√

2µ({0})
[
µ({0}) − a

]
.

Let b = a −
√

2µ({0})
[
µ({0}) − a

]
. A short computation shows that

b > 0 is equivalent to the condition on a in the statement of the proposition.

Indeed,
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b > 0 ⇐⇒ a >
√

2µ({0})
[
µ({0}) − a

]

⇐⇒ a2 > 2µ({0})
[
µ({0}) − a

]

⇐⇒ a2 + 2µ({0})a +
(
µ({0})

)2
> 3

(
µ({0})

)2

⇐⇒
[
a + µ({0})

]2
> 3

(
µ({0})

)2

⇐⇒ a > µ({0})
(√

3 − 1
)
.

Now, let

J :=
{
x ∈ G |µ({x}) ≥ b

}
.

We proved above that I − I ⊂ J . Thus, to complete the proof it suffices

to show that J is weakly uniformly discrete.

Let K ⊂ G be any compact set. Since µ is translation bounded, we have

by definition

C := sup
t∈G

µ(t+K) < ∞ .

We show that for all t ∈ G we have

♯
(
(t+K) ∩ J

)
≤ C

b
,

(which clearly proves that J is weakly uniformly discrete). Indeed, for all

t ∈ G we have

C ≥ µ(t+K) ≥
∑

x∈
(
(t+K)∩J

)µ({x}) ≥ b♯
(
(t+K) ∩ J

)
.

This shows that J is weakly uniformly discrete and the proof is finished. �

Our next two results show that a relatively dense set can only give rise to

a positive definite Dirac comb if it is a lattice. This ties in well with various

recent strings of research (see remark below).

Lemma 2.7 (Rigidity Lemma). Let G be an LCAG. Let Λ ⊂ G be weakly

uniformly discrete. Then δΛ is positive definite if and only if Λ is discrete

subgroup of G.

Proof: The implication ’⇐=’ is obvious. It remains to prove the implication

’=⇒’. As δΛ is positive definite, it follows from Proposition 2.4 that the

function

f(x) =

{
1, if x ∈ Λ,

0, otherwise.
,

is positive definite. As f 6≡ 0 (as Λ is relatively dense), it follows that

f(0) 6= 0, and hence f(0) = 1. Let now x, y ∈ Λ be arbitrary. Then, by

Krein’s inequality we have:

∣∣f(x) − f(x− y)
∣∣2 ≤ 2f(0)

[
f(0) − ℜ

(
f(y)

)]
= 2[1− 1] = 0.
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Therefore f(x− y) = f(x). As f(x) = 1 it follows that f(x− y) = 1 and

hence x− y ∈ Λ. This shows that

Λ− Λ ⊂ Λ,

and thus Λ is a subgroup of G. As Λ is weakly uniformly discrete it follows

that it must even be uniformly discrete and it follows that Λ is a discrete

subgroup in G. �

Corollary 2.8. Let Λ ⊂ G be a Delone set. Then δΛ is positive definite if

and only if Λ is a lattice.

Proof. By the previous lemma, Λ is a discrete subgroup. By assumption it is

furthermore relatively dense and uniformly discrete. Thus, it is a lattice. �

Remark. The result can be seen in the context of a famous theorem of

Cordoba [8] and a well-known question of Lagarias [15]. The theorem of

Cordoba says that if Λ is a Delone set, and δΛ is Fourier transformable with

discrete Fourier transform, then Λ is crystallographic (i.e. a finite union of

translates of the same lattice). The question of Lagarias asks whether every

Delone set Λ with strongly almost periodic Dirac comb δΛ is actually crys-

tallographic. Note that if δΛ is Fourier transformable with discrete Fourier

transform, then δΛ is a strong almost periodic measure [17]. Recently a pos-

itive answer to Lagarias question was given under the additional hypothesis

of finite local complexity independently in [9] and [13]. Moreover, in [13] it

is shown that the answer is in general negative without the assumption of

finite local complexity. In the context of Meyer sets corresponding results

were already obtained in [26].

Another simple consequence of Proposition 2.4 is the fact that given a

discrete positive definite measure, its restriction to a closed subgroup of G

is also positive definite. In the remainder of this section we investigate when

the restriction to a subgroup preserves the positive definiteness. We start

by defining the restriction of a measure to a subgroup.

Definition 2.9. Let G be an LCAG. Let µ be a measure on G and let H

be a closed subgroup of G. We define the restriction of µ to H by

µ|H(B) := µ(B ∩H).

for B a Borel set in G. Then µ|H is a measure on G with supp(µ|H) ⊂ H,

and can therefore be seen as a measure on H.

Note that since H is closed in G, the characteristic function 1H is mea-

surable and locally integrable. It is easy to see that µ|H = 1Hµ.

Lemma 2.10 (Restriction lemma - first version). Let µ be a discrete positive

definite measure on G, and let H be a closed subgroup of G. Then µ|H is

a positive definite measure on H.
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Proof: We denote by Gd and Hd, respectively, the groups G and H when

equipped with discrete topology. Let f : G → C be the support function

of µ given by f(x) = µ({x}). Then, by Proposition 2.4, f is a positive

definite function on Gd. This directly gives that the restriction g : H →
C, g(x) = f(x) is a positive definite function on Hd, and hence again by

Proposition 2.4 the measure
∑

x∈Hd
g(x)δx is positive definite measure on

H. But this is exactly the desired statement. �

Combining Proposition 2.4 with Corollary 2.10 we get the following gen-

eralization of [3, Lemma 8.4]:

Corollary 2.11. Let L be a lattice in G, let η : L → C be a function and

let µ = ηδL. Then µ is a positive definite measure on G if and only if η is

a positive definite function on L.

If H is an open subgroup of G, it is automatically closed. In this case, it

follows immediately from Cc(H) ⊂ Cc(G) that the restriction of any positive

definite measure on G to H is a positive definite measure on H.

Lemma 2.12 (Restriction lemma - second version). Let G be an LCAG.

Let µ be a positive definite measure on G, and let H be a open subgroup of

G. Then µ|H is a positive definite measure on H.

Proof: As H is open in G, we have Cc(H) ⊂ Cc(G). Therefore, for all

f ∈ Cc(H) we have

µ|H(f ∗ f̃) = µ(f ∗ f̃) ≥ 0,

with the first equality follows from the fact that the support of f ∗ f̃ is

contained in H and the second equality follows as f belongs to ∈ Cc(G) as

well. �

3. On relatively dense sets of a-visible Bragg peaks

In this section we restrict our attention to positive and positive definite

measures in Rd. We will combine our previous considerations with certain

ingredients from mathematical diffraction theory to obtain the Meyer prop-

erty for certain subsets of the set of Bragg peaks and to provide a new

characterization of the Meyer property.

We will be interested in Meyer sets. There are various characterizations

of Meyer sets in Euclidean space (see e.g. [16, 20, 21]). Here, we will use

that a subset Γ of Rd is Meyer if and only if Γ is relatively dense and Γ −Γ

is weakly uniformly discrete. A more common definition requires that Γ is

relatively dense and Γ − Γ is uniformly discrete. However, based on [16]

these two definitions are shown to be equivalent in the appendix of [4].

Next we will review the theory of mathematical diffraction. For overviews

of this theory we refer the reader to [2, 18, 19]. During the entire section
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{An}n will be a van Hove sequence in Rd i.e. the An will be relatively

compact subsets of Rd with

|∂RAn|/|An| → 0, n → ∞

for all R > 0. Here, | · | denotes Lebesgue measure and, for B ⊂ Rd, the set

∂RB consists of all x ∈ Rd whose distance from both B and Rd \B does not

exceed R. Obviously, any sequence of balls (cubes) with radius (sidelength)

tending to ∞ is a van Hove sequence. For a translation bounded measure ω

on Rd we define

γn :=
ω|An

∗ ω̃|An

|An|
.

Here, for a measure ν we denote by ν|A the restriction of ν to A and by ν̃

the measure with ν̃(f) = ν(f̃).

Definition 3.1. Let ω be a translation bounded measure. Any cluster point

γ of the sequence (γn)n in the vague topology is called an autocorrelation of

ω.

Remark. Let ω be a translation bounded measure in Rd. Let U be an

open relatively compact subset of Rd. Then, C := sup |ω|(x+ U) < ∞. As

shown in [5] the space MU,C of translation bounded measures µ on Rd with

sup |µ|(x + U) ≤ C is compact in the vague topology and all γn belong to

this space. It follows that the sequence γn always has cluster points.

As is well-known (and not hard to see) any autocorrelation γ of a trans-

lation bounded ω is positive definite. For this reason its Fourier transform

γ̂ exists and is a positive measure on the dual group R̂d of Rd, see [17, 5]

for further discussion. We call this Fourier transform a diffraction measure

for ω. We define the autocorrelation of a Delone set Λ ⊂ Rd to be the

autocorrelation of its Dirac comb δΛ =
∑

x∈Λ δx .

Let us recall next the definition of a-visible Bragg peaks, see [26] as well.

Definition 3.2. Let µ be a translation bounded measure on Rd, and let γ

be any autocorrelation of µ. For each a > 0 we call

I(a) := {χ ∈ R̂d | γ̂({χ}) ≥ a}

the set of a-visible Bragg peaks of µ.

After this review of diffraction theory we now note the following conse-

quence of the Sparseness Lemma 2.6.

Lemma 3.3. Let µ be a positive and positive definite translation bounded

measure on Rd. If the set

I :=
{
x ∈ Rd |µ({x}) ≥ a

}
.

is relatively dense for some a > (
√
3− 1)µ({0}), then I is a Meyer set.
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Proof: By Lemma 2.6 the set I − I is weakly uniformly discrete. As I is

also relatively dense, the statement follows. �

Remark. A natural question is if the lower bound (
√
3 − 1)µ({0}) can be

improved in Lemma 3.3. We provide an example which shows that it cannot

be decreased under 1
2µ({0}): Let µ = δZ+δπZ. Then for all a > 1 = 1

2µ({0})
the set {

x ∈ R |µ({x}) ≥ a
}

= {0} .
is not relatively dense. However, in the case a = 1 the set

I :=
{
x ∈ R |µ({x}) ≥ a

}
= Z ∪ πZ ,

is relatively dense and

I − I = Z⊕ πZ ,

which is dense in R.

We are now proceeding to prove our main result.

Theorem 3.4. (a) Let µ be a positive translation bounded measure on Rd

and let γ be an autocorrelation of µ. If the set I(a) of a visible Bragg peaks

of µ is relatively dense for some a > (
√
3 − 1)γ̂({0}), then I(a) is a Meyer

set.

(b) Let Λ be a Delone set in Rd and let γ be an autocorrelation of Λ.

If the set I(a) of a visible Bragg peaks of µ is relatively dense for some

a > (
√
3 − 1)γ̂({0}), then for all (

√
3 − 1)γ̂({0}) < b ≤ a the set I(b) is a

Meyer set.

Proof: (a) If µ is a positive translation bounded measure on Rd, any au-

tocorrelation γ is positive and positive definite. Therefore, so is γ̂ [1], [7].

Therefore, applying the result of Lemma 3.3 to γ̂ we obtain the first state-

ment.

(b) This follows from (a) as I(a) ⊂ I(b) if (
√
3− 1)γ̂({0}) < b ≤ a. �.

Remark. Let us put the previous result in perspective.

• In Theorem 3.4, if some I(a) is relatively dense, then I(b) is relatively

dense for all b < a. The same is not necessarily true for b > a as can

be easily seen by considering a variant of the example given in the

remark following Lemma 3.3 above. In fact, the mentioned example

has the desired property (but is not a Delone set). To obtain a

similar feature with a Delone set, we can consider

Λ = Z× Z ∪
(
(
1

2
, 0) + Z× (πZ)

)
.

• This result can be compared with a corresponding result when the

underlying set is Meyer itself. Then, for each 0 < a < γ̂({0}) the set

I(a) = {χ ∈ R̂d | γ̂({χ}) ≥ a} ,
of a-visible Bragg peaks is Meyer [26, 27].
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We finish this section by using the preceding results to provide a new

characterization of Meyer sets in terms of positive definite measures.

Theorem 3.5. Let Λ ⊂ Rd be relatively dense. Then, the following asser-

tions are equivalent.

(i) Λ is a Meyer set.

(ii) For each 0 < ε < 1 there exists a positive and positive definite

measure µ such that, for all x ∈ Λ we have

µ({x}) > εµ({0}) .

(iii) There exists a positive and positive definite measure µ and some√
3− 1 < ǫ < 1 such that, for all x ∈ Λ we have

µ({x}) > εµ({0}) .

(iv) For each 0 < ε < 1 there exists a Meyer set Γ ⊂ R̂d, with autocorre-

lation γ, such that

Λ ⊂ I(εγ̂({0}) ,

where I
(
εγ̂({0})

)
is the set of εγ̂({0})-visible peaks of Γ.

(v) There exists some 0 < ε < 1 and a Meyer set Γ ⊂ R̂d, with autocor-

relation γ, such that

Λ ⊂ I(εγ̂({0}) .

(vi) For each 0 < ε < 1 there exists a Delone set Γ ⊂ R̂d, with autocor-

relation γ, such that

Λ ⊂ I(εγ̂({0}) .

(vii) There exists some
√
3 − 1 < ε < 1 and a Delone set Γ ⊂ R̂d, with

autocorrelation γ, such that

Λ ⊂ I(εγ̂({0}) .

Proof: For any subset Σ of Rd and any ε > 0 we define

Σε := {χ ∈ R̂d : |χ(x)− 1| < ε for all x ∈ Σ}.

Similarly, we define for any subset Ξ of R̂d and any ε > 0

Ξε := {x ∈ Rd : |χ(x)− 1| < ε for all χ ∈ Σ}.

We will use below that Meyer sets can be characterized via these sets.

The implications (ii) =⇒ (iii) , (iv) =⇒ (v) and (iv) =⇒ (vi) =⇒ (vii)

are obvious, while (iii) =⇒ (i) follows from Lemma 3.3. The implication

(vii) =⇒ (i) follows from Theorem 3.4. (iv) =⇒ (ii) follows from the fact

that µ = γ̂ is positive and positive definite [17, 7]. (v) =⇒ (i) follows from

[26, Thm 5.3 (iii)]. To complete the proof we prove (i) =⇒ (iv).
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Let ε ∈ (0, 1) and let ε′ = 1 − ε and Λ′ =
(
Λ

ε
′

2

) ε
′

2

. Then Λ ⊂ Λ′ and

(
(Λ′)

ε
′

2

) ε
′

2

= Λ′ [20]. Let Γ = (Λ′)
ε
′

2 . We prove that Γ has the desired

property. Let γ be an autocorrelation of Γ . Then supp(γ) ⊂ Γ − Γ =: ∆.

Therefore, by [26, Thm. 3.1], for all y ∈ ∆ε′ and all x ∈ Rd we have
∣∣γ̂({x+ y}) − γ̂({x})

∣∣ ≤ ε′γ̂({0}).
Now, by [20, proof of Cor. 6.8] we have

Γ
ǫ
′

2 ⊂ (Γ − Γ )ε
′

= ∆ε′ .

This implies

Λ ⊂ Λ′ ⊂ Γ
ǫ
′

2 ⊂ ∆ε′ .

Therefore, for all y ∈ Λ ⊂ ∆ε′ , we have
∣∣γ̂({y}) − γ̂({0})

∣∣ ≤ ε′γ̂({0}) .
This gives

γ̂({y}) ≥
(
1− ε′

)
γ̂({0}) = εγ̂({0}),

which finishes the proof. �
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